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FOREWORD

This work was carried out principally over a period of two years from

September 16, 1977 to September 15, 1979. During most of this period progress

suffered somewhat from lack of adequate metallurgical advice and assistance.

Dr. Ronald J. Livak of the WSU Department of Material Science and Engineering

joined us for the summer of 1979 and contributed materially during that brief

period to our progress and understanding. His formal work is reported in a

"Metallurgical Report" included as Part B of this final report. His total

contribution through insight and understanding he shared with us greatly

exceeded this formal report, substantial though it is. During the early part

of the work we were fortunate to have thecounsel via telephone of Dr. Richard

Rohde of Sandia Laboratories, whose earlier work provided the motivation for

that reported here.
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PART A

G. E. Duvall and P. M. Bellamy

I. Introduction

The role of shear stress in phase transitions is controversial and the

questions involved are implicit in the work of Gibbs, though he was wise

enough to avoid discussion of the problem. What he did was to show how

thermodynamics applies to a solid-liquid system which can be reduced to a

set of thermodynamic variables involving only one stress parameter, the

hydrostatic pressure (Gibbs, 1971). His treatment is relatively straight-

forward and unquestionably correct. The basic difficulty lies in the mean-

ing of the "Gibbs function," which is well-defined for a system with only

one stress parameter and does not exist for multiparameter systems. (The

function defined in many texts by Legendre transformation from the free

energy and called the Gibbs function does not play the role in phase transi-

tions that the hydrostatic Gibbs function does). Some simple aspects of the

problem are described below; more detailed reviews and calculations have been

given by Kamb (1961), Paterson (1973), and Robin (1974). In the simple and

quite unrealistic example of non-hydrostatic transition treated below, thermo-

dynamics says nothing about the effect of transition on the shear stress;

that must be supplied as an additional hypothesis.

Before launching into details of examples, some preliminary remarks are

in order. We first consider the stress deviations in uniaxial strain and

some consequences of their collapse.

1.1 Collapse of Stress Deviators

With all other factors being equal, it is clear that a transformed

nucleus growing in a parent matrix will have less energy if it harbors no

.... , -I - -
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shear stress than if it does. Then one's simple expectation is that mean

shear stress in a material undergoing polymorphic transition will be

reduced by transformation, at least in its early stages. Given the non-

equilibrium and inhomogeneous aspects of transformation in real materials,

it is by no means evident that this will indeed occur in a shock wave.

Some experimental evidence exists to indicate that it does.

Whereas impact in real systems involves complicated three dimensional

stress systems, shock experiments are usually done in plane geometry, in

which strain is uniaxial in the direction of propagation. When an isotropic

elastic material is compressed uniaxially to a pressure pz = -az in the direc-

tion of compression, maximum resolved shear stress and hydrostatic pressure

are*

(I - 2v) 
(I= -2(I -V) Pz

= - /3 for Poisson's ratio, v = 1/4

1 + V (2)
P = 3(l - v) Pz

= 5p z /9 for v = 1/4

Ductile materials yield when T is large enough; brittle materials fracture.

The stress deviators in uniaxial compression are Sx = 4T/3, S = S = -2T/3,xy z

S.. = 0, i t j.iJ

If a material can exist in either of two phases under given conditions

of temperature and pressure, the stable or equilibrium phase is that with the

- lower Gibbs energy; i.e. the material transforms to lower its Gibbs energy.

Solid-solid or polymorphic phase transitions at high pressure are normally

studied under near-hydrostatic conditions, and only pressure and temperature

contributions to the Gibbs energy need be considered. In shock compression

* Equation numbers start with (1) in each section. Reference to equations in
another section is made by appending the section number, e.g. (1-1).

*
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of high strength materials, the hydrostatic component of stress may be

accompanied by very large shear or deviatoric components. In such cases

it is anticipated that phase transformations, when they occur, will occur

so as to reduce the shear contribution to the Gibbs energy, as well as the

pressure and temperature contributions. This is illustrated in Fig. 1.1:

a material might be driven to a state A in phase I, and it would transform

to a state B in phase II in order to reduce G, both without shear. With

combined pressure and shear stress it might be driven to A'; it would still

be expected to transform so as to approach the point B' in phase II without

shear. That is the nuclei in phase II would attempt to align and orient

themselves so as to minimize the total Gibbs energy.

If the material at A' had been on the point of fracturing because of

shear stresses present in phase I, the danger of fracture would have been

diminished by the transformation. There exists fragmentary evidence that

this can occur in shock compression.

G, (P, To, r4-- o)

GI (P, To, r=o)BG G (P, To, ro )

G

I.

P-I

Fig. 1.1 Reduction of Gibbs Energy by Phase Transformation

.? . .
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Fig. 1.2 is a tracing of a quartz gage record obtained for an impact-

produced shock wave which has propagated through a single crystal of CdS

in the direction of the c-axis. The first arrival, at the left of the trace,

has propagated with elastic velocity. The second arrival, at the far right,

has propagated with a velocity which indicates the material has partially

or completely transformed between the times of first and second arrivals.

The authors of this work identify the relatively flat region between first

and second arrivals with the polymorphic phase transition known to occur at

27 kilobars. The difference between 27 and 31.5 kbar may represent residual

shear stress or incomplete transformation. The basic concept seems correct.

mm

8, sec /

-12 kbors

rrn m ]

4 "4 5  -
sor

31.5 kbars kbars

0 .1 .2 .3 .4 .5 .6 .7 .8 .9
TIME (p.sec)

Fig. 1.2

Quartz gage records of shock transmitted through single
crystal CdS. Propagation is along the "c" or 11z" axis

L (Kennedy and Benedick, 1966).

Figure 1.2 can be better understood with the help of the diagram in

Fig. 1.3. Suppose the line OAM represents the curve of elastic compression

of CdS in uniaxial strain along the c-axis, and that, without phase transition,1w . ,
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Pz

o r
, A

Fig. 1.3

Postulated pressure-volume
loci for the record of Fig. 1.2

dynamic failure would occur at the point M. Curve ODCN is the curve of hydro-

static compression of. CdS and the segment DC represents the transition from

, phase I to phase IH. Suppose further that in uniaxial elastic compression the

phase transition is initiated at the same average pressure as under hydrostatic

'I.

compression. Then transition from phase I to phase HI is initiated at point

,, A, the shear stress is immediately relieved and pz starts to drop. This
- corresponds to the drop in stress immediately behind the first peak in Fig. 1.2.

II . . .. 
I
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The trajectory of the state point AGB is determined only by a detailed

integration of the flow equations; but it is required to lie above the

Rayleigh line connecting the stable transition point, D, with the final

state, B. At point B the material is in phase II with some shear stress.

On relief of the shock pressure, the state point will probably traverse

some trajectory like BCE, ending up at zero pz with some residual elastic

strain.

This picture is very conjectural but still quite plausible in general.

The actual details cannot now be stated. In support of the picture one

can make the following calculation:

Let pz be stress along the line OAM in Fig. 1.3 and p be the mean pressure

on OD. Then for uniaxial strain along the Z or "C" direction,

Pz = 33 z

Px Py 13 z
p (pz + 2px)/3, so

Pz = 3p/(l + 2C13/C33)

= 1.363p for CdS.

Taking the ratio of the first peak in Fig. 1.2 to the amplitude of the following

valley as (p /p):

(pz/p)meas = 1.354 < 1.363

The difference between this and the calculated value corresponds to the verti-

cal difference between G and D in Fig. 1.3, if the hypothesis of shear collapsei.
is correct.

A second experiment from Sandia Laboratories, using InSb, shows a result

similar to that for CdS (Kennedy and Benedick, 1965).
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Rohde (1970) has reported measurements of the shock-induced reversal

of martensite to austenite in an Fe-Ni-Cr alloy between room temperature and

4000C. Reversal pressure, pz, decreases monotonically with temperature.

At normal temperatures, a three wave structure exists: an elastic precursor

followed by the phase transition wave, followed in turn by compression to the

driver pressure. At the highest temperature the three wave structure appears,

in a single observation, to be replaced by a two wave structure. Moreover,

the extrapolated transition pressure lies below the Hugoniot Elastic Limit,*

suggesting that the transition has caused T to vanish or to become very small,

and that the elastic wave is thereby preempted. No studies were made to

determine whether or not clues to events lay in the microstructure of recovered

specimens. There was no follow-up to this observation.

A recently completed set of experiments and calculations for a high

velocity projectile shocking an iron plate show unambiguously that the 130

kbar phase transition in iron has w~arked influence on the nature and extent

of structural damaqe to the plate (Bertholf et al., 1975). Numerical calcu-

lations which best agreed with the experiments assumed that stress vanished

as phase transformation occurred.

1.2 Definition of the Gibbs Function

Classical thermodynamics is essentially macroscopic, i.e., it must work

when the only knowledge of a system is external. When phase transitions

occur within a volume under observation, it still must be true that the total

increase in internal energy is equal to heat added plus work done on the

system by external forces. If we assume changes to be irreversible, dQ = TdS.

Then, always

* The Hugoniot Elastic Limit (HEL) is the amplitude of the elastic precursor

in a shock wave whose final pressure is greater than the HEL. The amplitude
of the HEL is (l-v)/(1-2v) times the dynamic yield stress at the point of
measurement.
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dE = TdS + dW (3)

By examining the interior of the system, we can infer other useful

relations. For example, if the system is transforming from phase 1 to phase

2, the mass fraction of phase 2 is denoted x, temperature is common to both

phases and surface energy is neglected, then specific volume, entropy and

internal energy of the phase mixture are related to values in the two phases

by the equations:

V = (1 - x)V1 + xV2  (4a)

S = (1 - x)S1 + xS2  (4b)

E = (1 - x)E1 + xE2  (4c)

If the only stress acting is hydrostatic pressure, which is common to both

phases, then

dW = -pdV (5)

dEl = TdS I - pdV1  (6)

dE2 = TdS 2 - pdV 2  (7)

The above equations can be combined to give the relation:

dE = (1 - x)dE1 + xdE 2 + (E2 - E1 )dx

= TdS - PdV = (1 - x)(TdS1 - pdVl) + x(TdS2 - pdV 2 ) +

I.
+ [T(S 2 - S1 ) - p(V2 - V1)]dx (8)

It is evident that if Eq. (3) is to be satisfied, we must have
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E2 - E = T(S2 - S1) - p(V2 - V1)

or

G= E2 - TS2 + PV2 = - TS1 + pV1 = G1  (9)

Eq. (9) can be taken as the definition of the Gibbs function for this situa-

tion; i.e. the Gibbs function is that function whose continuity insures the

sanctity of Eq. (3).

To illustrate the possibility that shear stress can enter into the phase

equilibrium condition, consider the following artificial situation wherein

the second phase grows as a slab compressed between two slabs of phase one,

with the system in a state of overall uniaxial strain, Fig. 1.4.

P4

phase I

phase 2

phase I

ti

Fig. 1.4

Transformation in uniaxial strain

Since px is common to both phases, the argument leading to Eq. (9) can

be repeated exactly, with px substituted for p. The equation of equilibrium

now becomes

|° E2 - TS2 + PxV2 = E I TS1 + pxV1  (10)

and the Gibbs function for this problem is

G = E - TS + pxV (11)
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Equations (10) and (11) are formally identical to the hydrostatic Gibbs

function except that p x replaces p. The equilibrium point for the two phases

may be significantly affected by differences in their physical meanings,

however. Consider the compression process in detail, assuming that phase 1

is an elastic solid with finite yield point. From the uniaxial strain condi-

tion it follows that, for elastic cr.'pression,

Px = 3p(l - 0/(0 + v) (12a)

= 3p/2 for v = 1/3 (12b)

where v = Poisson's ratio. Above the yield point, when px- Py Y,

Px= p + 2Y/3 (13)

From Eq. (11),

dG1 = -SIdT + VldP x  (14)

For dT = 0, this becomes, using Eqs. (12b) and (13), and assuming Y = constant,

dGI = 3Vldp/2 below the yield point, (15a)

dGl = V1dp above the yield point. (15b)

The stress state in phase 2 has less obvious constraints. It might grow

in such a way that px = p, i.e., with no resolved shear stress. Then

dG2 
= V2dp (16)

If it grows as an elastic system in uniaxial strain,

dG2  3V2dp(l - v)/(l + v) (17)

212
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If yield should occur, above the yield point Eq. (16) again applies with

a different value for Y. Some possible variations and their effects on

are shown in Fig. 1.5.

C4

52

F I

0

Pb " PC

Fig. 1.5

Gibbs functions for uniaxial strain. The effects of
changes in V1 and V2 have been ignored.

1. dG = Vld p

S2. dG1 = 3Vldp(1 - v)/(1 + v), v = 1/3
3. Same as 2 with yield at A.

4. dG2 = V2dp

5. dG2 = 3V2dp(1 - v)/(l + v), v = 1/3

6. Same as 5 with yield point at B.

1" '
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Implications of the above conditions for the equilibrium point are

shown in Fig. 1.5. Points a-d have the following meaning;

a. phase equilibrium for hydrostatic compression,

b. phase 1 is compressed elastically, phase 2 grows hydrostatically,

c. both phases are elastic in states of uniaxial strain,

d. both phases are in states of plastic flow.

The meanings of curves 1-4 are defined in the figure caption. If transitions

were sensitive only to mean pressure, transition pressure would be pa' If

phase 1 were to remain elastic until transition occurs, and if phase 2 were

hydrostatic, transition would occur at b and the locus of states would be

Obp'. The difference between pa and pb in such a case could he quite large.

Other possibilities are described in the caption.

A more realistic situation, which illustrates the complexities of the

problem, is that in which an isolated nucleus of phase-two material is growing

in a matrix of phase 1. To be definite, let the system be in an overall state

of uniaxial strain, as in Fig. 1.6.

4PX
phase I

I-NUCLEUS

OF
PHASE 11

I. jPK

Fig. 1.6

Transformation in uniaxial strain
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We still require that changes of internal energy of the entire system

be given by

dE - TdS - pxdV (18)

But now, since the stress state varies from point to point, we must solve

a boundary-value problem to relate overall changes of E, S, V to changes in

individual components, i.e., we seek more general expressions as substitutes

for Eqs. (4).

First of all we define specific internal energies, ej, specific volumes,

vi, and specific entropies, s., where j = I for phase 1 and 2 for phase 2.

Then the total energy, etc. for each phase are:

Ej = i (e./v.)dV (19)J Jy J J

iSj= (s./v.)dV (20) .

vj = J dV (21)

i
m.= dV/v. (22)
3 JVj

x = M2/(M + M2) (23)

Note that dV/v. is the mass of the volume dV under current conditions.3i

If dV is taken to be the current value of the initial, untransformed,

uncompressed volume in phase 1, we have oy conservation of mass,

dV/v. = dV°/v constant = dm (22a)

Io Then Eqs. (19), (20) and (22) become

E = J eJdVo/v' (19a)

S = sdV/vT (20a)

vj--
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mj = f dV0 /v' (22a)
vj

Now suppose that the boundary of phase 2 undergoes at each point a

displacement 6i and there is a simultaneous change in applied pressure, p x"

The resulting change in E2 results from a change in e2 integrated over the

entire volume plus a change resulting from incorporation of new material

within the boundary:

6E2 = 6e 2dm + e2 6m2  (24)

M2  C2
where 6m2 = (c-)dA and the second integral is over the surface, C2, enclosing

Mw eiher2 (6u-no
M2 . Neither 6e2 nor e2 may be constant over the region of integration, and

we indicate this by a bar over the quantity. Then

6E2  92e, + e2 62 (25)

where 6M2  
1C2 6m2"

C2

Fig. 1.7

Change in volume of phase 2.

" ",
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Similarly, recalling that 6M41 =-SM2

6E M 1  - 6M2 (26)

6S. = M.FF. ± - 6M (27)

J 26Vj M. '3  7iT 6M 2  ( 28 )

with 6E = El + 6E2, etc. and M2 = Mx, M = M(l - x), and T common to both

phases, Eqs. (24)-(28) in Eq. (18) give

(1 -x) [e-" T s- + P -) I + x[ -2 T 2 + p 5 2 ]

+ 6x[( e2s - Ts2 s + Px v2s) - (e s - Ts s + Px v1i)] = 0 (29)

where superscripts "s" denote averages over the surface C2.

According to Eq. (29), equilibrium is achieved and Eq. (18) is satisfied

if l= g2 where

g. = e T ss + Pxv. (30)

The pressure, px, is that applied to the pistons, Fig. 1.6, not the local

value at the interface.

Equations (29) and (30) are deceptively simple. Values of ej, s., vj

and their increments may vary dramatically throughout a volume containing

an odd-shaped nucleus of material which is elastically dissimilar to the

matrix. The quantity g in Eq. (30) looks like a Gibbs function, but it is

not a point function; nor is it a state function in even an average sense,

since px is the externally applied stress, not the local value.

Solutions required to evaluate Eq. (29) do not normally exist. One

might reasonably expect to establish conditions for the onset of transition

... .. .... .. -:.. .
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by applying the above considerations to a spherical nucleus or to a lens,

but any such simple relation must fail when the transition progresses far

enough.

There is one other interesting case which can be treated in an elementary

way. Suppose that the stress system consists of one component shear, r, with

corresponding strain y. Suppose further that the total shear strain is

y = Yl(l - x) + y2x

Then dW = VTdy and equilibrium exists when

El - TS1 - VTYl = E2 - TS2 - VTY2

Coe (1970) has suggested that such a transition exists in the mineral

enstatite.

Robin (1974) has pursued the problem of defining a Gibbs function in

a crystalline lattice. He has found that such a function can be defined

exactly for displacive transitions which maintain a plane boundary between

the two phases, with orientation of the normal in certain directions, when

strains produced by the displacement is small. This is interesting, but not

particularly helpful in dealing with most solid-solid transitions.

Unless simplifying conditions can be found empirically, prospects for

a simple theoretical description of a transforming solid do not appear bright.

Unfortunately, these difficulties are not always recognized by material

scientists and physicists dealing with solid-solid transitions. It was the

intent of the present study to seek empirically some guidance in treating

the effects of shear stress (distortion) on transformation. But the experi-

ments turned out to be more difficult than anticipated.

1 l°

r. o . . . . .
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II. Experimental Details

2.1 Experiment Design

The objective of these experiments was to determine whether or not

collapse of stress deviators accompanies phase transitions in a solid. The

first step toward this objective is based on the observations by Rohde (1970)

that the amplitude of the elastic wave in shocked Fe/30%Ni is independent

of temperature and that the pressure of the cx-y or a-e transition diminishes

monotonically with temperatures apparently dropping below the elastic wave

amplitude at 4000C. If transition pressure is less than elastic wave ampli-

tude, the structure of the resulting shock wave is sensitive to collapse of

the stress deviators. This can be seen with reference to Fig. 2.1. We see

plotted there several curves for a material imagined to exist in either of

two phases: OAB is the curve of uniaxial elastic compression of phase I; OD

is the hydrostat of phase I; QJ and QH are the uniaxial elastostat and hydro-

stat, respectively, of phase II; ODGH is the equilibrium hydrostat, including

phase transition from D to G. Curve OAC is that for quasistatic elastic-

plastic compression of phase I with yield occurring at A.

Under steady conditions, with constant driving pressure, PH' the shock

OACH,J would be recorded, with E the elastic wave, PI the wave corresponding

to phase transition initiated at C and PII the final wave. The end state of

this transition is shown at H on the hydrostat of phase II, though it may

include some shear stress. This three-wave structure would be expected after

the wave has propagated a long way. The transition from A to C involves

plastic deformation; the phase transition occurs between C and H,J.

* The symbols Fe/3ONi are used throughout to denote an alloy of iron and
nickel containing 30% of the latter element in solution.
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If the Hugoniot elautic limit (point A) were to lie above B, where phase

transition from the elastostat is assumed to occur, with final state H or J,

a two-wave structure like OBH,J would be expected, unless failure occurred

in the elastic state of phase II. OB is an elastic transition; BJ and BH

represent the phase transition with or without shear stress in the second

phase. If the transformation conserves shear stress and if elastic failure

occurs above K, then transition B to H,J will break into two waves for some

value of P H" Retention of the two-wave structure for all PH implies that

shear is diminished in the transition process. "Second shock" experiments

can be used to measure sound velocity in the final state and to distinguish

between elastic and plastic states.

If elastic failure is relatively slow compared to phase transition, as

is true in iron (Forbes, 1976), then for thin samples the Hugoniot Elastic

Limit (HEL) may lie above B, while for thick specimens it lies below. This

makes it possible to determine effects of transition on shear by varying

specimen thickness and driving pressure, and to thus supplement variation

of other physical parameters which alter relative amplitudes of HEL and

transition. It has already been observed that this can be accomplished by

variation of alloying materials (Blackburn et al., 1965; Stepakoff and

Kaufmann, 1968; Fowler et al., 1961; Loree et al., 1966; Gust and Royce,

1970) in iron and by temperature variation (Rohde, 1970).

In light of these considerations, it was proposed to do a set of experi-

ments with Fe/3ONi in which temperature is varied to bring transition pressure

|o .below the HEL. Sample thickness would also be varied, giving data on transi-

tion kinetics at Lhe same time.

- It was proposed to do plane shock experiments at temperatures such that

transition pressure lies both above and below the HEL in order to determine

-,
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effects of transition on material failure. Three kinds of experiments were

envisioned:

1. Dynamic experiments using quartz, sapphire, or manganin gage to

monitor the wave structure in compression, thus determining the

phase transition pressure and HEL, where both exist.

2. Recovery experiments in which transition pressure lies above and

below the HEL in turn. Microstructure of specimens would be com-

pared to determine differences in the nature and extent of micro-

structural damage in the two cases.

3. Transition kinetic experiments. These were to be of two kinds:

(i) front surface impact experiments and (ii) shock transmission

experiments. Front surface impact experiments are most easily

done, and they lead to direct measurement of transition rate

(Dandekar and Duvall, 1973). Transmission experiments display

elastic and phase transition waves and the decay of both.

The WSU Shock Dynamics Facility was used for generation and measurement

of the shock waves (Fowles et al., 1970).

2.2 Materials

If the proposed experiments were to be carried out, a phase-transforming

material was required in which the relative amplitudes of elastic and transi-

tion waves could be varied. Loree et al.(1966) reported that addition of Ni

to Fe reduced the a - c phase transition pressure, and they gave a value of

approximately 82 kbar for the transition when Ni concentration was 30%.

Rohde (1970) later suggested that the Fe/Ni/C/Mn/Si-70.45/28.4/0.5/0.45/0.2%

alloy had a transition pressure less than 10 kbar at 3900C. Fowler et al.

(1961) showed that an 18/8-Cr/Ni stainless steel had a transition pressure of

30 kbar at room temperature, but Gust and Royce (1970) in remeasuring a pire
1

U -"- . - a. . . . . . --.
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18/8 alloy found a value of 79 kbar. Zukas and Levinson (1976) reported

that a pure cast alloy of 18/8 Cr/Ni transformed readily and reversibly from

a to y phase under the influence of either temperature or pressure, and that

the normal phase at room temperature is ferrite (a). They also reported

that commercial 18/8 stainless (321) could be transformed to a-phase at

liquid nitrogen temperature by cold working.

It appeared then that Fe/3ONi was the most promising candidate material,

but that 18/8- Cr/Ni was worth examining. Billets of pure Fe/3ONi and 18/8-Cr/Ni

were ordered from Carpenter Steel Co., and some effort was made to convert

commercial 304 stainless to a-phase for preliminary experiments. This effort

was unsuccessful; no amount of work at liquid nitrogen temperature served to

convert a significant fraction to a.

Experiments at room temperature showed that neither 18/8-Cr/Ni nor

70/30-Fe/Ni had a well-defined elastic precursor and that transition pressure

for the Fe/Cr/Ni was only slightly less than that for the Fe/Ni. So experi-

mentation was continued with the Fe/Ni alone because of extensive data on

its properties which were already available.

Carpenter Steel Co. provided an analysis of the starting materials for

each casting and Dr. Donald Mikkola of Michigan Technological University

very kindly arranged for analysis of the materials after they had been cast

and forged. Results of both analyses on two different castings are given

in Table I. The A-Casting was received first in the as-cast form. Prelimi-

nary experiments produced a very slowly rising precursor, and microscopic

examination suggested that small particles of Ni were distributed throughout

the bar. It was returned for hot forging and the resulting material was

denoted AF. After this treatment there was a fractured region in the center

of the bar and what appeared to be microscopic pores distributed throughout.

'I
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The second casting--the B-Casting--was cast and hot-forged before

delivery. It was of better quality mechanically and contained about the

same amount of carbon as the first casting. The carbon content did not

appear to interfere with transformation to the c-phase.

TABLE I

Impurities in 70/30-Fe/Ni provided by Carpenter Steel Co.

A-Casting B-Casting

Carpenter Mikkola Carpenter Mikkola
analysis analysis* analysis analysis

Ni 30.86% 29.7% 29.85% 29.5%

C .002 .0165 .005 .0163, .0191

Mn <.Ol Traces of <.O Traces of
Ti, Al, Ti, Al,

Si .03 Si, P <.O Si, P

P <.005 <.005

S .004 .002

Cr .01 .01

Mo <.01 .01

Sample A contained a center crack and microscopic voids.
Sample B was not porous.
A was returned for hot forging after initial examination indicated precipitated
Ni. B was hot forged immediately after casting.
* D. F. Mikkola, Metallurgy Department, Michigan Technological University.

2.21 Transformation Properties of Fe/3ONi

This alloy can exist as either austenite (fcc) or martensite (bcc) at

room temperature and up to about 3500C. If Ni content is much less than this,

austenite is not retained at room temperature. If Ni content is much greater
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than 30%, the bcc phase cannot be obtained by cooling. General features of

the transformation properties are shown in Fig. 2.2.
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Fig. 2.2

General features of temperature-
induced oL-y transitions in Fe/Ni
alloys (Decker, 1960)

Details of transformation appear to depend on the investigator, on the exact

amount of nickel, which may differ by a percent or more from the nominal

value, and on the presence or absence of other impurities.

Machlin and Cohen (1951) published the results of a study made with

single crystals of Fe/3ONi partially transformed to martensite at -400C.

By measuring the orientation of martensite habit planes with respect to the

fcc matrix they were able to show that the transformation is in accord with

the Bowles (1951) double-strain analysis for martensitic transformations,

provided one additional assumption is made in the Bowles analysis: The second

direction of atom motion lies along the only remaining close-packed direction

in the unrotated close-packed plane after the first strain.
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Patel and Cohen (1953) measured the effects of uniaxial tension and

compression onMs for Fe/2ONi/.5C rods and the effect of hydrostatic pressure

on Ms for Fe/3ONi. They found Ms to be raised by application of uniaxial

stress and depressed by hydrostatic pressure, and they found both results

to be in accord with the thermodynamic concept of a driving force (-AF)

which depends on stored elastic energy as well as temperature.

Otte (1957) examined the effects of low temperatures and cold work on

laboratory-prepared Fe/Ni alloys containing 28, 32, or 40% Ni. The 28% Ni,

Ilk undeformed, was examined only at room temperature. X-ray revealed the

presence of y and a phases and suggested E, but this was tentative. The

32% Ni showed only y with some extra lines appearing after deformation at

-196 0C. He concluded that faulting in these alloys was minimal and there

was little evidence for work-hardening.

Breedis (1964) found the martensite start temperature of a pure Fe/33.1%Ni

alloy to be -1000C. He found the martensitic transformation occurring spon-

taneously and "in audible bursts."

Papadakis and Reed (1961) reported that quenching of Fe/3ONi in dry ice

and acetone produced 40% martensite and quenching in liquid N2 produced 90%.

Graham et al. (1967) measured the shock Hugoniot curves of a commercial

alloy, "Temperature Compensator 30," manufactured by the Carpenter Steel Co.

It contained 29.5%Ni/O.5%Mn/0.2%Si/0.l%C. Samples were austenitized at 6500C

for two hours, furnace-cooled to 1000C, and air-cooled to room temperature.

They were held in liquid N2 for 168 hours to produce 95% martensite. Bulk

modulus of the fcc phase increases rapidly with pressure at about 25 kbar,I.
and they inferred froii this that the material was undergoing a pressure-

induced Curie transition from ferromagnetic to paramagnetic. The a-phase

had constant bulk modulus to 50 kbar.

1° "
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Samples of Fe/30%Ni/.026%C and Fe/28%Ni/O.1%C were rolled to 200 p-thick

sheets, austenitized at 750°C for one hour and quenched to room temperature

(Bowden and Kelly, 1967). The 30% Ni was cooled to -55°C, the 28% Ni to

-90°C, in order to produce 60% c-martensite in both alloys. Two-inch square

specimens were shock-loaded to 100, 160 and 200 kbar, respectively, and examined

for changes in structure.

Before shock loadings, specimens showed a structure of twinned and par-

tially twinned c-martensite plates in a matrix of retained austenite with a

small amount of lath martensite having no internal twinning. Transmission

electron microscopy of shocked specimens showed that some or all of the a-

martensite had transformed to the y-phase, which was retained. Transformation

was complete for the 160 and 200 kbar specimens. Only a small amount of the

o-martensite was transformed at 100 kbar, and discrete plates of y-martensite were

found within the a-martensite. It was inferred from habit plane orientation

that the y-plane is produced by two distinct mechanisms. The normal mechanism

produces austenite with the same orientation as the parent austenite. This is

not true for the second mechanism, austenite in this case was assumed to have

been produced by inhomogeneous shear on (101) planes.

Rohde et al. (1968) measured the amount of austenite produced by shocking

bcc martensite of "Temperature Compensator 30" to various pressures. Their

samples were from the same lot as that used by Graham et al. (1967), and the

heat treatment was the same. The initial and final concentrations of austenite

are shown in the following table, taken from their work:

Shock pressure 0 18 50 70 100
(kbar)
% Austenite 26.2 ± 1 33.5 ± 1 37.5 ± 1 44.4 ± 1 50.0 ± 1

They also inferred that at 100 kbar an fcc martensite had been produced. It's

interesting to note that Bowden and Kelly (1967) found little transformation

ii i.
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to austenite for a 100 kbar shock into 60% martensite; whereas Rohde et al.

found 25% conversion for 74% initial martensite. The difference might

involve pressure duration, the effect of varying initial % concentration,

or differences in impurity content of their materials. It has been found

that carbon and manganese in steel tend to stabilize austenite, and the

"Temperature Compensator 30" contains both.

Rohde and Graham (1969) measured the effect of hydrostatic pressure on

the "austenite start temperature," As s i.e. the temperature at which the

I-phase begins to convert to y as temperature is increased at a uniform rate.

In their experiments the heating rate was 3 or 4°C/min. They found dAs (P)/dP

to be non-linear with values -4.5°C/kbar from 0 to 10 kbars and -3.5°C/kbar

from 0 to 20 kbars. They also found As (0) = 3800C. In contrast, Patel and

Cohen (1953) found the pressure dependence of the martensite start tempera-

ture of Fe/3ONi to be dMs/dP = -8.8°C/kbar with Ms (0) = -200C. Rohde and

Graham inferred from their thermodynamic analysis that the rate of transfor-

mation from a to y will increase with increasing pressure. The material

used by Rohde and Graham was "Temperature Compensator 30" described by Graham

et al. (1967). Their results were fitted equally well by thermodynamics of

isothermal or isentropic transformation. They concluded that for thermodyna-

mic purposes it is adequate to use the gross work done on the sample in com-

puting the driving force. Stress and strain fields for a single plate are

not required.

Pope and Edwards (1973) measured the effects of hydrostatic pressure

and cold work on the martensite-austenite reversal in Fe/30.3Ni. They found

dA /dP < -30°C/kbar, 0 < P < 2.3 kbar, dA /dP positive and decreasing with P
5 5

for 2.3 < P < 6 kbar, and dAs/dP = -l.90C/kbar for 6 < P < 20 kbar. The

graph of A vs. P has a sharp cusp at 2.3 kbar, and decreasing negative curva
S

ture thereafter. Thirty percent cold work increases As from 390 to 440'C

L -,,.
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at atmospheric pressure and from 3200 to 310 0C at 20 kbars. Cold work shifts

the cusp to slightly higher pressures. The authors explain their results by

the proposal that hydrostatic compression of the mixed phase containing

martensite platelets, which differ elastically from austenite, causes shear

stresses at the a-y interfaces. This contributes to the driving force,

causing -dAs/dP to be initially large. When yield occurs, this contribu-

tion vanishes and As returns to a more normal dependence on pressure.

Since we were planning shots at high temperature in order to achieve

transition from bcc to fcc at very low pressure, we would necessarily be

working near the austenite start temperature. We determined that our experi-

mental procedure required specimens to be at temperature for as much as half

an hour before being shocked. We measured the amount of austenite produced

in transformed specimens on being held at various temperatures for 30 minutes.

The results are given in Fig. 2.3. There is no detectable change at 3000C,

<5% at 3500 and about 13% at 4000C. If A is defined as the point of inter-s

section of extended straight portions of the curve, as shown in the figure,

As 3950C. This same procedure was used by Rohde and Graham (1969), who
S

100

, 80
s-

c60

440

20-

.... 4-A s

200 300 400 500

Annealing Temperature, *C

Fig. 2.3 Effects of annealing on bcc martensite in Fe/3ONi. Specimen
from casting B transformed by cycling in liquid N2 and
annealed for 30 minutes at various temperatures.
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found As 3800C for "Temperature Compensator 30" alloy. This differences

tends to confirm the belief that addition of carbon and manganese stabilizes

the austenitic phase when it's added to Fe/3ONi. This point will arise again

in discussion of the Hugoniot for the a-phase (Section 2.22).

In most of the work discussed above the fraction of austenite existing

in a sample was deterinined by x-ray diffraction methods (Miller, 1964;

Hilliard and Cahn, 1961; Averbach et al., 1950; Lindgren, 1965). Other methods

used involved inductance changes (Rohde and Graham, 1969; Pope and Edwards,

1% 1973) or resistance changes (Patel and Cohen, 1953).

An extensive review of martensitic transformations at low temperatures

containing over 600 references is given by Reed and Breedis (1965).

2.22 Mechanical Properties

Papadakis and Reed (1961) determined the effect of a-phase content on

relative contributions of Rayleigh scattering and elastic hysteresis to ultra-

sonic attenuation. Their material was described only as Fe/3ONi. In the

course of their experiments they measured longitudinal and transverse wave

velocities for various conditions of the specimens. Their Table I is repro-

duced here, with wave velocities converted from inches per microsec to mm/psec.

"Microstructure and ultrasonic velocity during transformation.
Frequency = 7 Mc; velocity in mm/psec.

Longitudinal Transverse

Treatment % Austenite Wave Velocity Wave Velocity

Cold rolled 100 ....

Equiaxeda 100 ....

Dry ice and
acetone quench 60 4.95 + .05 2.64 4 .05

Liquid nitrogen
quench 9-11 5.23 ! .05 2.51 ± .05

Temperedb 10-15 4.95 1 .05 2.59 .05

1 Recrystallizedc 100 4.65 + .05 --

a. Heated to 1500OF (8150C) b. 300°F(1490C) for 2 hoursI.. - .. t 1501 r (919 C) fpr 2 hurs . .. 0

io
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It is hard to evaluate these measurements. If "Tempered" values are

excluded, the three remaining longitudinal velocities fit a straight line

quite well:

CL(mm/psec) = 4.67 t .0064 x (%a)

With the tempered value again omitted, the straight line through the remaining

pair of transverse values is

Cs = 2.74 - .0026 x (%a)

Micrographs in the paper show that tempering at 1490C for three hours has

smoothed the appearance of the material. But annealing experiments done here

at various temperatures show that a half hour anneal produces no change in

a-content below 3500C, Fig. 2.3. Yet the longitudinal velocity given in the

above table falls on the straight line if a-content is 44% instead of 87.5%.

And the transverse value corresponds to 58% on the transverse line, Fig. 2.4.

5.6 3.0

5.4- 2.9 X

5.2 - 2.8

E 2.7

4.8 2.6 00

4.60 '0406 80 0 2.5
20 40 60 80 100 0 20 40 60 80 100

% a-phase % a-phase
(a) (b)

Fig. 2.4 Effect of martensite (a) content on sound velocity.
a) Longitudinal, CL = 4.67 + .0064 x (%a)
b) Shear, CS = 2.74 - .0026 x (%a)

I . (. Papadakis and Reed (1961)
x Graham et al. (1967)
r1 Present work

.

'a
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If the difference is split and we suppose the true a-content was 51%, each

translated value is in reasonable accord with the straight lines given above.

Graham et al. (1967) reported longitudinal and shear velocities for

austenite and longitudinal velocities for martensite. They are plotted in

Fig. 2.4. They also inferred compressibilities from their shock wave

measurements. Elastic constants from ultrasonic and shock measurements are

given in Table II.

TABLE II

Elastic Constants and Densities of Fe/3ONi

%a Density X+2p i k Reference

kilobars kilobars kilobars

0 8 .195a 1772 .... Papadakis and Reed (1961)

(20) 5 8.158 2048 696 1120 Graham et al. (1967)

5 8.186±.005 1978 661 1097 Present work

40 8 .121a 1990 566 1235 Papadakis and Reed (1961)

87.5 8 .034a 1968 539 1249 Papadakis and Reed (1961)

90 8 .029a 2196 506 1521 Papadakis and Reed (1961)

(88) 95 8.032 2016 -- Graham et al. (1967)

95 8.020±.003 2315 541 1594 Present work

5 8.158 HuOoniot modulus: 1163 Graham et al. (1967)

95 8.032 Hugoniot modulus: 1667 Graham et al. (1967)

a. Papadakis and Reed do not quote densities; these values are calculated
from the equation p = 8.195 - .1844 (%a/100). Constants in this equa-
tion are obtained from values obtained in our work.

The first eight rows are from ultrasonic measurements at atmospheric pressure.
Io The last two are from shock measurements below 50 kbar.

Average density for the pure y-phase of Fe/3ONi determined from x-ray

diffraction angles is

py 8.167 ± .013 g/cc

r -- -a



31

For the a-phase it is

PC = 8.000 ± .013 g/cc

If we assume the austenitic phase to be 95% y and the martenistic phase to

be 95% a, the mean densities are

p (austenite) = 8.159 g/cc

p (martensite) = 8.008 g/cc

These compare with measured densities for our samples

p (austenite) = 8.186 ± .005 g/cc

p (martensite) = 8.020 ± .003 g/cc

The room temperature P-V Hugoniot curves for Fe/3ONi are shown in Fig. 2.5.

The upper points on the a-phase curve by Loree et al. (1966) and by Rohde (1970)

are transition states at which the a-y phase transformation occurs. The differ-

ence between them may result from small differences in composition of their

materials. Rohde used "Carpenter temperature compensator 30" which contains

about 0.5% C, 0.45% Mn and 0.2% Si. He reported a smaller initial concentra-

tion of a-phase than we found in our samples. He also found approximately

18% conversion of a to y at pressures below the transition pressure, which

we did not find; this has the effect of softening the Hugoniot, indicated by

the dotted line in the figure. Transition pressures we measured for cast

material A averaged 79 kbar, including one anomalously low value. The cast

and forged material, AF, later found to include micropores, had a mean transi-

tion pressure of 74 kbar; the lower value is presumed to result from the

porosity. We assumed the point of Loree et al. (1966) to be valid for our

work, and the a-phase Hugoniot was taken to be the solid curve in Fig. 2.5.

In estimating impact pressures (Table VI), the high pressure state was

assumed to be in the y-phase, taken from the LRL Compendium (Van Thiel et al.,

1977, Vol. 3, p. 662) and Graham et al. (1967). The locus of final states

used in choosing experimental parameters was faired into the y-phase data

40 low=
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220A a-phase, Graham et al. (1967)

220- 0 y-phase, Graham et al. (1967)

0- a-phase, HEL, Rohde (1970)
Transition state, Loree et al. (1966)

24- Transition pressure, present work

X y-phase
-9. Transition state, Rohde (1970)
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of Graham et al. from the high pressure points given in the Compendium.

This procedure is in error in principle, but it was adequate for experimental

design purposes. In estimating the impact pressures produced in experiments

at different temperatures, no account was taken of the thermal offset of the

Hugoniot. For both these reasons, the impact pressures given in Table VI

are estimates only. They may be in error by a few kilobars.

The Hugoniot curve in the pressure-particle velocity (P x,U p) plane was

estimated as follows. The expected transition pressure was chosen and the

corresponding (PxTVT) pair was chosen from the a-phase values of Table III,

T Tsay PT 40 kbar, V 12178 cc/g. The particle velocity corresponding

to this pair is U = [P xT(VVT)]I2 .0108 cm/psec. The second shock

Hugoniot is then given by

UpII I F T )(VT vF)]/2

where Px is in megabars and Up is in cm/psec. PxF and VF pairs were chosen

from y-phase values in Table III. The resulting curves are like those shown

in Fig. 2.6.

TABLE III

cc-phase y-phase
Pressure Volume Pressure Volume
P x, kbar V, cc/g Px kbar V, cc/g

0 .12469 50 .11883

10 .12393 60 .11820

20 .12318 70 .11762

30 .12246 80 .11706

40 .12178 90 .11651

50 .12110 100 .11598

60 .12058 110 .11549

70 .12004 120 .11495

80 .11960 130 .11443

82.5 .11940 140 .11393

I,
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140 P -60 kbor
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Fig. 2.6 Hugoniot curves of Fe/3ONi used for estimating impact pressures.

This was constructed by assuming that the state behind the
second shock lies on the y-phase Hugoniot and that

up= II = [PT(Vo VT)] + [(pFPT)(VT_ VF)]

2.3 Procedures

2.31 Material Preparation

Samples were in the form of disks approximately 1.25 inches diameter.

They were heated for 2 hours in a metal bag at 650'C and water-quenched. They

were converted to the cc-phase by alternately quenching to liquid nitrogen

I.. - - -I
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temperature and warming to room temperature. Five cycles of this treatment

were enough to produce about 95% a-phase. Relative concentrations of y-and

a-phases were measured by x-ray diffraction using the method of Miller (1964).

Micrographs of specimens before and after cycling in liquid N2 are shown in

Plate I (Part B). The mean concentration cf y-phase concentrations after

cycling, was 6 ± 2%. Densities were measured using a displacement method,

but were not accurate enough to determine phase concentrations.

After transformation to the a-phase, samples were lapped flat and

parallel on both faces, then polished. Samples to be heated had a hole

drilled near one edge of the back surface (away "i-om the impact surface) and

tapped for a thermocouple. Room temperature shots were potted in epoxy in

a target ring with the impact face perpendicular to the axis of the gun

barrel. A quartz gage was epoxied to the back face of the specimen. Samples

to be heated were mounted in the furnace described in Section 2.33.

2.32 Tilt Manipulator

Clear differentiation of multiple wave arrivals in a shock experiment

requires that tilt of the flat face of the projectile with respect to the

flat face of the target at impact be small. Tilt angles greater than 10-3

radians are generally unacceptable. Target and impactor surfaces can readily

be aligned at room temperature before the target chamber is evacuated, and

this alignment is maintained reasonably well during evacuation and up to the

time of impact.

When targets are heated or cooled, following evacuation of the target

chamber, the alignment normally changes as temperature changes because of

differential expansion or contraction of various parts of the system. Experience

has shown that alignment at the final temperature before the target chamber

is closed and evacuated does not insure continued alignment after evacuation.

Some means of adjusting the orientation of the target was therefore required

_7
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for experiments with heated targets.

A water cooled target holder was constructed which was supported by

three worm-gear driven jack screws of the design shown in Fig. 2.7. The

Jack screw

Differential
nut/screw

a holderbody

s wd s m Worm gear.1 and wheel

Fig. 2.7

One of three jack screws used for support and
alignment of the water-cooled target holder

jack screws were connected to the target plate by differential screws to

facilitate initial alignment of the target from inside the tank. The jack

screw worms were driven by a gear reduction system which also formed the

vacuum seals for the adjustment rods which extended through the vacuum cham-

ber and the muzzle room wall. Initial target alignment is made in the usual

way by dial indicator and breech plug. The back surface of the target was

lapped and polished to a mirror finish of sufficient optical quality that

an auto-collimator could be used to detect any change in the alignment of

1A
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this surface. After initial mechanical alignment the auto-collimator was

aligned on the mirror surface through a system of mirrors. The jack screws

were adjusted during heating so as to preserve the original alignment by

following any motion through the telescope. Some experiments were done

using a reflected laser beam with satisfactory results.

It was found that some late modifications of the target design made

only slight or no adjustment of the target necessary. Some of these modi-

fications include annealing the aluminum heater block and providing lava

feet for the contact between the heater block and the target holder plate.

2.33 Hot Target Design

Inner
Electrode

Insulating Oue
Bushing E le c t r o d e

Insulating- - te
Bushing Cooling

Thermocouple- Quartz Heater

I.
Sa IsJI

Fig. 2.8 Hot Target Assembly, Mark I

I" .
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Two types of target assemblies were used for the series of high tempera-

ture experiments. The first target shown in Fig. 2.8 consists of an aluminum

block into which a 125 watt nichrome heater is potted with high temperature

cement. The target is held in a stepped hole by the spring-loaded contact

assembly. The target was impacted by a flyer which extended far enough

beyond the projectile to contact the target before the projectile touched

the heater block.

The contact assembly was designed to provide a 50 Q electrical environ-

ment down to the quartz gage. Contact with the quartz gage was by spring

loading on the inner and outer electrodes. Water cooling was found necessary

so as not to anneal the springs or melt the soldered connections to the con-

tact assembly.

Results from this contact arrangement were erratic. The data seem to

indicate variable contact resistance at the quartz gage. The second target

assembly remedied this trouble by using silver-filled epoxy to attach the

contacts. It was found that these joints also needed to be spring loaded.

This assembly is shown in Fig. 2.9.

High Temperature
502 Cable
RG 142 BIU

Terminationf ring
Resistor

SThermocouple, ean
AlPlt C up Quartz Gage with

Gold Platin

Fig. 2.9 Hot Target Assembly, 
Mark II Hae ol
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2.34 Shot Procedure

For room temperature shots the target ring containing the sample was

mounted in the target ring holder and aligned parallel to the face of a

gage plug in the end of the gun barrel. Cables from tilt pins, trigger

pins, and the quartz gage were led to oscilloscopes outside the muzzle room.

The quartz gage output was to be recorded on two separate oscilloscopes, and

these were calibrated for current input from the quartz gage. The target

chamber was closed and evacuated, the gun breech pumped to the desired

pressure, oscilloscope sweep triggers set and the gun was fired. The result-

ing records were read on a microscope with a moving stage and digitized out-

put, and the results were converted to pressure vs. time diagrams, to be

described in Section III.

For hot shots the procedure was the same. In addition it was necessary

to monitor the temperature and alignment of the target and to adjust align-

ment, as required, using the tilt manipulator described in Section 2.32.

III. Experimental Results

3.1 Precursor Amplitudes

Elastic precursor waves were discernible on 7 records with initial temper-

atures ranging from 200C to 2250C. There was no detectable dependence of

amplitude on temperature. In some cases they were barely discernible, in

others they were well-defined. They seemed to be better defined at elevated

temperatures than at room temperature. Cold working of samples had no effect

|o on precursor detectability. Rise times in the precursor were always large.

The mean amplitude was

9.05 ± 1.01 kbar.



40

TABLE IV

Precursor amplitudes for Fe/3ONi

Shot # thickness, P e, kbar Quality T
cm 0

78007 .6543 7.6 poor 200C

78010 .1895 9.5 fair 200C

78021 .4942 9.85 good 200C

78023 .1587 8.0 poor 20°C

78041 .7239 8.9 good 810C

78047 .7467 10.5 good 170 0C

78049 .7470 9.0 good 2250C

p e = 9.05 ± 1.01 kbar
x

3.2 Effect of temperature and pressure on recovered martensite

The amount of austenite in samples recovered after shocking is shown

in Table V and in Fig. 3.1. There is no apparent dependence on impact pres-

sure. If the 120 0C, 140 kbar point is omitted, shocking produces no signi-

ficant change in austenite for T 2000 C. For higher temperatures the
0

amount of recovered austenite increases with TO. This suggests that materials

shocked at the lower temperatures go into a different phase from those shocked

at high temperatures. The transition which occurs in Fe/3ONi is derived from

the 130 kbar a-c transition in iron. It is not unreasonable that the e phase

should still be accessible by compression at this composition. In that case

it may well be that the large fraction of recovered y in the 1200C, 140 kbar

shot arises because, at that large pressure, the material is carried through

the c-y boundary and into the y-phase.

'I
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TABLE V

Austenite in recovered samples for different
initial temperatures and impact pressures

% y in Recovered Sample Initial Temperature, 0C Impact Pressure, kbar

12 20 85

5 20 85

9 80 80

65 120 140

10 200 65

45 275 70

40 275 80

89 400 85

87 400 85

86 390 90

100

-80
C x
;60

4 0  X

20
x x

I0 100 200 300 400. , To, C

Fig. 3.1

Retained austenite vs. initial temperature

Is =
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3.3 Effect of initial temperature on transition pressure

Transition pressure vs. initial temperature is plotted in Fig. 3.2,

along with similar measurements reported by Rohde (1970). Except for two

points at To = 200*C and 225°C, the points correspond fairly well with

Rohde's measurements, being a little higher at the lower temperatures.

These measurements and those of Rohde were made with quartz gages

affixed to the rear faces of the specimens. The quartz gage is at or near

its upper limit of reliability for pressures the order of 70 or 80 kilobars

in the Fe/Ni; some of the differences between our data and Rohde's may be

due to that. It was suggested earlier that the alloy Rohde used may convert

more readily to austenite than our material, a circumstance which could lead

to differences of the kind shown in Fig. 3.2 at the lower temperatures. It

is surprising, however, that the differences appear to vanish at the higher

temperatures.

90-

80

70 X 0
0

60 X
X5

50 X

'40 0  x 0
a. 

X

30 X

20 -x

10 X

o I

0 100 200 300 400

bb T, C

Fig. 3.2

Transition pressure, P x vs. initial temperature for Fe/3ONi

X Rohde (1970)

C)Present Measurements
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Rise times in the oscilloscope records at elevated temperatures were

very long. One of the records, reduced to shock pressure and time, is shown

in Fig. 3.3. The first wave is the elastic precursor, the second is the

transition wave. Impact pressure was estimated at 55 kbar, and the final

wave is off the scale to the right. Reasons for the long rise times are not

apparent. Tilt of the target was monitored before the shot, and there was

no evidence of warping of the target.

30
Go

0

.0

.0

2U,

,.

0._

Time (/psec)

Fig. 3.3 Pressure time history for shot no. 79-049. Fe/30Ni,
material B. T = 225'C. Impact pressure =- 55 kbars.
Elastic precursor 9 kbars, phase transition at 43 kbars.

Initial temperatures and transition pressures are given in Table VI.

• l,

1" ' N

Otto , r
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There were three shots with initial temperature 4000C. Only one of

them yielded gage records which could be read with any confidence. Oscillos-

copes triggered late and only part of the initial wave was recorded, Fig. 3.4.

80 kb

Pxt

t-.
50 nsec

Fig. 3.4 Oscilloscope record from shot no. 79-027. Fe/3ONi,
material B. Initial temperature 390°C. Impact
pressure ,85 kbar (calc.).

The amplitude of the ramp at the time of its first appearance is approximately

5.5 kbars, which is little more than half the precursor amplitude recorded for

initial temperatures from 200C to 225 0C. It's not possible that this precursor

is the elastic wave; it's too far separated from the final wave, and there is

no transition (PI) wave. It's unlikely that the sample has converted to auste-

nite before being shocked. Fig. 2.3 suggests that it was at least 80% marten-

site when shocked. it seems most likely that it is the transition (PI) wave

and that it did indeed cotlapse the stress deviators and thereby pre-empt the

a elastic precursor.

The ramp amplitude quoted above is plotted with a question mark beside

it in Fig. 3.2. It falls below Rohde's estimate at 390"C.

Sample thicknesses were varied from 1 mm to 8 w. and there was no indi-

cation that either elastic precursor amplitude or transition pressure depends

on sample thickness to a marked extent.

_oI .
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IV. A Computational Model for Shear Relief during Phase Transformation

When the experiments described in the previous section are extended to suffi-

ciently high temperatures, we expect to find some interference between yield and

phase transition, depending on the extent to which stress deviators are collapsed

by the transition. As an aid to interpretation of the experiments, a one-dimensional

wave propagation program is required which incorporates time-dependent yield, time-

dependent phase transformation, and an adjustable model of stress deviator collapse.

In the course of the wave calculations, time will be incremented and new values of

stress, strain and energy will be calculated for each new time. Section 4.1 describes

computational procedures for time-dependent yield in general terms for arbitrary

strain increments. Section 4.2 deals more explicitly with uniaxial strain and I-D

wave propagation for time-dependent yield. A program for time-dependent phase

transition is described in Section 4.3. Some numerical results are given in Section

JP 4.4.

4.1 Yield Calculations for Arbitrary Strain Increments.

The increment in internal energy corresponding to a set of strain increments

(de.i) is

dU = c,.dE. ,

where a and c are stress and strain, respectively, both positive in tension. Let

Sij = ij + 6ijp

de = dc.. - 6..de/3
13 13

I| dO = dcii

Then

dU = (S.. - P6ij)(deij + L j)
13 13 13 3 13i

'I
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: Sijdeij + i ij6 - P6ideij - R d66 i

S ij6ij 0 ; 6i de ij_ 0 ; 6iji - 3

dU = pde + Sij deij

= increment in work of compression + increment in work

of deformation

For elastic strains
dS..

de.. i

where P is shear modulus. For pi = constant, the energy of deformation is

S.,
13 S..S. J21 dS.= 13 1 _

U 2f SijdSij 4J u - 2
o 13 4

0

where J2 is the second invariant of the stress-deviator tensor: J2 = . Sii/2.

The von Mises criterion for yield amounts to a statement that elastic failure

occurs when the energy of deformation exceeds a critical value which depends on

material. Its exact form is

J2 = S ij.Si/2 < Y 2/3 (1)

where Y is yield stress in simple tension for thin bars. If the inequality applies,

the material state is elastic. The equality is satisfied when the material state

lies on the yield surface. In principal axis coordinates,

=12 2 2(2J2 -- -(Sx + S y+ S z(2
i.

When the equality in (1) applies, Eqs. (1) and (2) define a sphere in (Sx,S y,Sz )

space, centered at the origin:

Sx + Sy2 + Sz2  R 2  2Y2/3 (3)

x y
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The trace of the deviators vanishes, as a consequence of their definition:

S +S +S =0 (4)x y z

Equation (4) defines a plane in deviator space. Its intersection with the sphere

of Eq. (3) determines a circle, centered at the origin, lying in a plane whose

normal makes equal angles with the three principal axes. When the combined stress

state of the material lies within this circle, the material is behaving elastically;

when it is on or outside the circle (as it may be for time-dependent yield), it is

behaving plastically.

Elimination of Sz between Eqs. (2) and (4) gives*

J S2 + S2 + S S (5)
2 Sx y x y

Since J is invariant, it is independent of the coordinates in which it is computed.

A given value of J 2 represents a sphere in (S x,S y,S z) space. Sx ,S y ,Sz are constrained

to lie on a plane in that space by condition (4). The origin of the plane and the

origin of the sphere are common, so a point (S x,S y,S z) which lies in the plane also

lies on a radius of the sphere, and that radius lies entirely in the plane. This

property is critical to the computational procedure described below. It leads to the

With J2 = y2/3, Eq. (5) describes an ellipse, this being the projection of the

aforementioned circle on the (S x,S y) plane. The equation of the ellipse can be

expressed in normal form by rotating the Sx,S axes 450:
xy

sx _ (S +S) 5' _ r - (-Sx + Sy)

(S x  , )2 (5 )2I.x + -i----- 1

a b

2 2Y2  
2  2Y2

9 3
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conclusion that if each deviator is reduced in the same ratio, the resulting point

withdraws toward the center of the sphere along a single radius.

The philosophy of computation is this: Compute Sx,Sy from the total strain,

assuming that total strain is elastic. Compute J2 from these deviators and compare

with Y2/3. If J2 < Y2/3 , the deviators are correct as calculated. If J2 > Y2/3 ,

the deviators are too large and must be reduced. If plastic flow is time independent,

the deviators are reduced by the factor a = Y/3J2t This brings them back to the

yield surface along their radius. If plastic flow is time dependent with relaxation

time T, the amount by which the radius vector from the origin to the calculated

values of S x,S y,Sz exceeds the radius of the yield sphere is reduced by the ratio

At/i, where At is the time step. This excess radius is

Ar = V72 - Y v'73.2

If At/i > 1, the flow is treated as time independent.

More explicitly, the computation is made as follows: Assuming the computed

change in strain to be elastic, Sx,Sy are computed. Denote these values by Sx ',Sy .

From Eq. (5), the corresponding invariant is computed. Denote it by J . The

comparison of J2' with Y
2/3 is made. If J21 exceeds Y2/3, and if time-independent

plasticity is assumed, the state point is reduced radially to the yield surface by

setting
S - Sx  : S = Y S (6)

2 2

Then 2 2
* I 2 -

J2 -3J 2 1J2 3
i.

For time dependent plasticity, the deviator J2 corresponds to a point in
(Sx,SySz) space at a distance from the origin r' = v72J ,  The radius of the

equilibrium surface is req Y/'7_. Assume r' > req. The calculated change in
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Sz
strain took place in a time At, and we

suppose that the state point has relaxed

along its radius vector toward the yield

surface by an amount SY

(r'-re) At

eq TX

where T is the current value of relaxation
Figure 4.1: Time-dependent stress

time for the stress-relaxing process. relaxation.

Then the new radius, at the end of the time step At, is

r r' At (7)
eq -T

provided At/T < 1. If At/T > 1, r is set equal to req.

Individual deviators have components

Sx  rr', S mr', Sze = nr' (7a)

where £,m,n are direction cosines of the radius vector r'. The final values of

SxSys z are therefore

r' S r (8)
x rs x y r y z rS z

where

r/r' = 1 -(-Y/VlTJ2)(At/). (9)

This process is related to the governing differential equation of relaxation

in the following way. There exists a relaxation law for S. of the form
tJ

I,
dS. de.

= J - g(g,T, ) (10)
dt dt

where g has been assumed to be the same for all deviators. Equation (10) can also

- .
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be written in the form

dS. de. (S-seq) dS'. (S_Seq)
dt dt T dt T

where T (Sj-S~q)/g(aT, ...) and Seq is the point at which the radius vector
where i

(S',Sy,Sz ) intercepts the yield surface. The S. are constrained to lie on thisx 3
radius, so Eq. (7a) applies. Then if Eq. (11) is divided by t, m, or n, depending

on the value of j, it becomes

dr _ dr' eq (12)' dt dt

In finite difference form this becomes

Ar = Ar' - (r-re) . (13)

eq T

Since

r = r' + Ar

r' = r° + Ar',

where

r° = [Sx (t), S y(t), SzMt)]
y

r' = [Sx(t+At), S'(t+At), S'(t+At)]y y

r = [S x(t+At), S y(t+At), Sz (t+At)],

Eq. (13) can also be written as

= r' - (r-r) (14)eq rT

If At/T << 1, (r-r ) can be replaced by (r'-r ) with only second order error; theneq eq
Eq. (14) is identical to Eq. (7). A somewhat better approximation is obtained if

Eq. (14) is used as it stands. Then

r + (r At/r'T)r- - 1__ + A/(15)

-- , ....

I . . . . ... . ,. .. .... ... .
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Equation (15) then replaces Eq. (9).

The assumption that the relaxation function, g, in Eq. (10) is the same for

all deviators and the corresponding assumption that the state point approaches the

equilibrium yield surface along a radius are consequences of the Associated Flow

Rule of formal plasticity theory; this can be seen as follows. During the time

increment, At, there have occurred increments, Ae., in the strain deviators. These

increments are partly elastic and partly plastic. If they are small we can write

Aej = Ae e + Aep  
(16)

The deviators, S'., are calculated as if the strain increments, Aej, were totally

elastic:
AS' = 2p.Ae. (17)

They are then caused to relax to values closer to or on the equilibrium surface.

Since the final change is proportional to the elastic strain increment

AS. = 2iAee  (18)

the reduction in stress deviat: from S' to S is proportional to the plastic strain

increment:

6S. - S - S. So + AS' - S? - AS. = 2pAeJ  (19)

But by the Associated Flow Rule (Eq. (2) of the Appendix),

AeJ = dX (20)

where f(p,S.) = 0 is the equation of the yield surface. Then
.3f

I, 6S. = 2pdX a (21)

But PdX is the same for all j and the af/3S. are components of V sf, a vector normal

to the yield surface, f = 0; therefore, the motion of the stress point is normal to

'I

I.
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the surface. Since it lies in the plane Sx +S + S .0, the vector 6S lies also

along a radius. If the yield surface is not a sphere, the coherence of Eq. (10)

and the computing procedure described by Eqs. (1)-(9) may no longer exist. Then

more explicit information about material behavior is required before a suitable

model for computation can be developed.

Equation (21) may appear to be in conflict with Eq. (2) of the Appendix. It

is not. The increments in stress which appear in Eq. (2) of the Appendix are

constrained to satisy the yield condition that all stress states lie on or within

the yield surface. The stress increments in Eq. (21) are derived from independent

considerations, and it follows from the Associated Flow Rule that these increments

are normal to the yield surface.

4.2 Uniaxial Strain.

The problem can be cast in a much simpler form for uniaxial strain. Only one

stress and one strain component need be considered and the equilibrium circle

reduces to two points which move in the pressure volume plane as density changes.

In Figure 4.2, OBC is a curve of A'%D

uniaxial compression from Vo. B is a

yield point and BD is the equilibrium

curve of uniaxial compression in the

plastic regime. OA is the hydrostat

through Vo ' DEF is a curve of uni-

axial expansion. If the loading-

unloading path is OBDEF, the segment F

DE is one of elastic expansion. Figure 4.2: Uniaxial strain.

If it is assumed that the stresses are supported by elastic strains, then one

can proceed as follows. Assume that curves BD and EF are given and px -C x, etc.:

1.

-,
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onBD: p q = p + 2Yc/3 (22a)

on EF: peq = p - 2Yr/3 (22b)x r

Yc and Yr need not be the same. Both Yc and Yr are positive. When a strain

increment Acx = AV/V is given, calculate

Ap' -(X + 2p)A x  (23)
x X

p. =p, + AP; (24)

x xx' where Px is the earlier value of px" The current value of V, i.e., Vp  is also

known. If (p',V p) lies on or between BD and EF, material response is elastic and
x

P ='. If it lies outside the interval, it must be reduced. This can be donex X

by setting

Pp  = p(V) + 2Y(V)/3 , (25)

if the equilibrium response is desired, or

P _ (P; - Pxq) At (26)Px = PxT

if relaxation is assumed. Here peq is given by Eq. (22a) or (22b). The differential

form corresponding to Eq. (11) is

dp dE p -peq
dx - + 2p) (x2 x x T (27)

If dE = dce + dEp and stress is supported entirely by elastic strain,
x x x

dp d dEe
Px _ 2- x

I. de dEp

= x(2I)d- + 21, x (28)

Comparing Eq. (27) and (28) shows that in this case

1
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eq 2 1 ,q

T d-t

px-
e q

T - 2-Y (29)

x

In actual computation of the uniaxial strain case, it may still be convenient

to use the stress deviator formalism. In that case the computation proceeds as

follows. Superscript "z" denotes values known at time t; "p" denotes those values
z z S z z

being calculated at t+At; "h" denotes values midway between. V, 5' ' Z 9

z z
y Z, and T are known from the last material computation. AV has been calculated

from the equation of continuity, VP = Vz + AV, Vh = (Vz + VP)/2, and At is known.

Because strain is uniaxial, only one stress deviator component is required,

Sy = S Sx + 2Sy = 0 ; Sy = -Sx/2

Then
. S2 + + SxS = 3S2 /4 (30)

2 x y xy x

The essence of the computation is:

AE x  = AV/Vh (31.1)

AS; = 4ph Ac x/3 (31.2)

S' = Sz + AS' (31.3)
x x x

= 3(Sx)21/4 (31.4)

If J 2 = S' (31.5)x x

If J > Y2 /3, = req/r (31.6)
I.

If plastic flow is time-independent

Sp  c.S' (31.7)x x

to. - .-
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If plastic flow is time-dependent:

a) if At > T, treat as time-independent

b) if At < T,

r - 1 - (l-c)(At/T) (31.8)

SP  (r/r')S' (31.9)

x X

The program used for computation is somewhat more complicated than indicated

above because p and Y are assumed to depend on pressure, P, and temperature T:

= a + bP - cT (32)

Y = cy~ (33)

Shear stress is assumed to be relieved during transformation according to the

following model (Figure 4.3). ABCD is mean pressure in the region of the

mixed phase. BC is the section which D C'

traverses the mixed phase region. D"

A'B'CC'D' is the upper trace of the C\B'

yield surface. D"C"BB"A" is its -- B

lower trace. At B', which is the C"C ,

boundary of the mixed phase region, X B" \\ A

the upper yield surface is made to V -All

collapse by setting yield strength

equal to Figure 4.3: Shear relief during
phase transformation

Y cyl(l-aq), 0 < q < (34.1)
y 0 < a < 1

S x> 0e qsx>O

~where q is mass fraction transformed to the higher density phase. At CC' the yield

I.
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surface is allowed to return to its normal value.

Between C" and B, collapse is once more allowed:

Y = Cyp[l + a(q-l)] , 0 < q < 1 (34.2)
0<a<l

Sx < 0

A flow chart for the stress deviator computation, which encompasses Eqs. (30)-

(34), is shown in Figure 4.4.

Experience with the numerical computation shows that the deviator collapse

function of Eq. (34) varies too slowly with q. The following function is presently

being used:

Y=C Prl 2 tan-I (aq)]y Tr

0<q <1

Y = c o{l - 2 tan-1[(J 3 .2)
y

O<x<l

Some references which provide background for this computation are Wilkins (1964),

Johnson et al. (1970), Johnson and Band (1967), and Lawrence (1973).

4.3 Numerical Computations

The primary point of these computations is to display the effects on wave

form which result when stress deviators are made to collapse during phase transi-

tion. A great many variations are possible, but four have been chosen. In one

case (Figs. 4.5a) the shock transition pressure is substantially less than the

Hugoniot Elastic Limit (HEL). It is seen in this case that a shock wave with

three breaks in profile is produced if deviators are not forced to collapse in

the transition, whereas it has only two breaks if deviators do collapse. In the

second case (Figs. 4.5b) the shock pressure of transition exceeds the HEL and three

N waves are present whether the deviators collapse or not. Deviator collapse does

m i, - m m r I N. . . .. . . . .. .
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Figure 4.4: Flow chart for computation of the stress deviators (Subroutine DEVIAT).

h h T h AV Vh ,S Z At are transferred from

F- subroutine EXSTAT2

a. - x h )a,, + xh h

bo = (1-x )b,, + xhb112

h hcp= (1-x )c~1 + x cw

cy (lxh)c y1+ y2

Ih=a + b P c-

As; = 3 hAVh

S, = S z + As,x x x

2 4 x

mixed phase <-- nos h jpure phase

ye or x 0? >

> 0 - n? yh c Ii h[1+a(x~1]

r- -S 
r 

--

y~~~~ h 
* 

(-



-0 ~ es= state is elastic

yes no

2J

equil. es >Th nor

2) -20

Sp as Sp Sx Sxp r' x x

X 2 x x

itlSx Sp S

x x

* Tr is relaxation time T. Any formula can be substituted here.

** There is no substantial justification for this mixing of constants for phases 1 & 2.

t Plastic work is used in Subroutine EXSTAT in the calculation of temperature and
pressure.

tt Plastic dilatation is assumed equal to zero.
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produce some irit.eresting structural details between the second and third

waves, and this is sOmiething to keep in mind when examining records of phase

transition. It should also be kept in mind that the profiles shown here are

probably not equilibrium or steady-state profiles. Program run time is

necessarily limited and details of the transformation may change considerably

with a much longer run.

Figure Captions for Figs. 4.5

Effect of stress deviator collapse induced by phase transition on wave forms.

a) Shock transition pressure is less than the Hugoniot Elastic Limit (HEL),

P T 9 kbar, HEL = 16 kbar
x

(1) No deviator collapse in transition

(1.1) P vs. x
x

(1.2) P vs. tX

(1.3) S vs. t
x

(2) Deviators collapse in transition

(2.1) P vs. xx

(2.2) P vs. tX

(2.3) Sx  vs. t

b) Shock transition pressure is less than the HEL. p T 42 kbar, HEL 14 kbar

(1) No deviator collapse in transition

(1.1) P vs. x

(1.2) P vs. t
x

(1.3) Sx vs. t

(2) Deviator collapse in transition

(2.1) Px vs. x

(2.2) Px vs. t

(2.3) S vs. t
-.
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Fig. 4.5al

Mean pressure for phase transition is P T5.5 kilobars, corresponding

Tto shock pressure Px = 9 kilobars. The Hugoniot Elastic Limit (HEL) in the

absence of transition would have been approximately 16 kbars. The stress

deviator is allowed to grow during the transition, but it reaches its maxi-

mum value at point B when only about 12 percent of the material has trans-

formed to the denser phase. Transition is not complete until point C. The

three wave structure is clear. Point A marks the onset of transition, Point

B is where yield first occurs, and point C is where the jump to the final

state begins. Had there not been a phase transition at A, Px would have

increased smoothly to 16 kbars, and only two waves would have occurred.

Oscillations in P x and Sx following the jump to the final pressure result

from choice of time step and damping coefficient.

The variaticy, of q, the mass fraction converted to the denser phase,

is interesting. Very little conversion is required to produce the first

break at A and the transition is completed very quickly in a brief interval

before the final jump.

Fig. 4.5a2

Mean pressure and HEL are the same as for Fig. 4.5ai, but the stress

deviator, Sx , is forced to collapse when transition begins at A. The amount

transformed is minute in the interval between A and B. At B the mass fraction

transformed is appproximately 2%. The effect of transition on the deviator,

S , is very small between A and B. At B the mass fraction transformed starts

to increase rapidly, S collapses suddenly until at C the transition is essen-

tially complete and Sx = 0. Mean pressure is essentially constant between

A and C; it rises slightly as temperature increases, since the transformation

is assumed to be slightly exothermic.
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Details of stress behavior between A and C depend upon the model used

for deviator collapse. If reductions in the deviator were very insensitive

to small change in composition, a three wave structure might appear, but

any reasonably rapid collapse would produce a two-wave structure similar to

that shown.

The differences in behavior of mass fraction transformed with and

without deviator collapse are remarkable, and the reasons for them are not

apparent. Mean pressure, P, rises from 5.49 kbar to 5.7 kbar with no collapse

during transition; it rises from 5.49 to 5.89 with collapse. Temperature

rise with collapse is about 26°C; without collapse it is about 32°C. The

difference, due to the added work of deformation, probably accounts for the

greater increase in pressure. This in turn may be sufficient to account for

the larger values of mass fraction transformed in the no-collapse case.

What appears truly remarkable is the tiny fraction of material which

must be transformed to produce a break in the wave profile. This is true

both with and without deviator collapses, but is more marked in the latter

case. This may explain why sluggish transitions are observed with shock

waves: a combination of deviator collapse and great sensitivity of wave

form to small deviations from a smooth Hugoniot.

Fig. 4.5b1

Mean pressure for the phase transition is 37 kilebars and shock pressure

is 42 kilobars. The HEL is approximately 14 kilobars. The stress deviator

is unaffected by the transition. The first break at point A represents yield

at the HEL. The second break, at B, results from the onset of transition.

As in Fig. 4.5a2, the amount transformed in the flat region following the

break is very, very small. Completion of the transition occurs where the

rise to the final state begins, at point C. More exactly, the fraction* 1
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transformed at 43 kbar is 89%. At the next time step Px 57 kbar and

transformation is complete.

Fig. 4.5b2

Hugoniot Elastic Limit and transition pressure are the same as for

Fig. 4.5bl, but the stress deviators are made to collapse as the transition

proceeds. This wave also shows three breaks but the form differs somewhat,

principally because of the nature of the function which collapses the

deviators. There are four points of interest on these records. The HEL is

reached at A and the stress deviator, S , is forced to lie on the yield

surface. At B the shock transition pressure is reached, though the actual

transition does not begin until point C. At C the deviator collapse begins.

This record is remarkable compared to earlier ones because the transformation

is delayed so long beyond the second break.

I.

h..
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V. Discussion and Conclusions

i) The original concept of the experiment to study the collapse of

stress deviators in a phase transition appears to have been sound.

Numerical computations show that if transition occurs at lower 
P

than HEL, a two wave structure appears if deviators collapse,

three waves if they do not.

ii) Experiments are very difficult. They are plagued by extraordinary

long rise times, not attributable to tilt of projectile relative to

target. Not all of the experimental difficulties have been resolved,

but we have reached a stage where solution appears witnin our grasp.

Material quality and metallographic control are in hand, the furnace

for hot shots is functioning well, and the tilt manipulator with auto-

collimator appears to work well.

iii) There appears to be one inadequate record at To 
= 390C which suggests

deviator collapse.

iv) The P -T phase diagram for the Fe/30%Ni alloy agrees generally withx

that obtained by Rohde (1970). Low temperature points are a little

higher than his, and this may relate to his observation that about

15% of the x-phase transformed to austenite before the transition

pressure was reached.

v) Examination of recovered specimens for austenite suggests that the

final phase reached in the transformation depends on impact pressure

and initial temperature. The records are not complete, but they are

I. in accord with the hypothesis that a triple point exists at about

200">C. At higher temperatures the material is shocked directly into

the y-phase. At lower temperatures and moderate pressures the shock

carries the material into a different phase--possibly c; and at

S --
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lower temperatures and high pressures it may be carried across the

o-c and c-y lines directly into the y-phase. The speculative nature

of this hypothesis has to be emphasized.

vi) Elastic precursors are often ill defined in this material, perhaps

because of the dendritic structure of the martensite, but the average

precursor amplitude is 9.0 ± 1 kbar and it appears to be independent

of sample temperature between 200C and 225°C.

There are several directions in which further work would be profitable:

a) With present information in hand study the a-y transition in Fe/3ONi

in the high temperature region (-400'C) for appearance and disappearance of

two and three wave structures, depending on temperature. This was the prin-

cipal original aim and it now appears to be within our grasp.

b) Determine in more detail the structure of the phase line and, by

varying impact pressure, attempt to outline the e-y line (if it exists).

c) Extend these studies to other materials. Fe/Cr/Ni systems would be

of considerable interest.

I.

b.
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PART B

R. J. Livak

I. Metallurgical Processing

1.1 Material Fabrication

The Fe-30%Ni alloy used in this study was prepared by Carpenter Techno-

logy in Reading, Pennsylvania. A 200 mm long ingot with a square cross

section that tapered from 70 mm on a side at the top to 48 mm at the bottom

was vacuum induction melted and cast to assure metal cleanliness. The first

ingot was received in the as-cast condition and was found to contain a large

center pipe and extensive porosity. The unsound condition of this

ingot made it unsuitable to use for the shock loading experiments.

A second ingot was prepared by vacuum induction melting and hot forged

to produce a double octagon rod approximetely 38 mm in diameter in order to

alleviate any casting porosity or pipe. The cast ingot was heated to 1150 -

1175°C for one hour, and one end was hot forged at this temperature. The

ingot was reheated for 30 minutes, and then the other end was hot forged.

The chemical composition of this second ingot, as determined by spectrographic

and wet chemical analyses done by the supplier, is given in Table I.

TABLE I: Chemical Analysis of Fe-30%Ni Alloy

Heat No. C Mn Si P S Cr Ni Fe

00291 .005 <.O <.Ol <.005 .002 .01 29.85 Bal

OI
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1.2 Heat Treatment

Cylindrical samples for the shock experiments were cut and machined from

the supplied rod and then heat treated to produce a martensitic (u') structure.

The samples were austenitized in small stainless steel heat treating bags at

650'C for 2 hours to give the face-centered cubic phase. After cooling to

room temperature in water, the samples were transformed to martensite by

quenching to -196°C in liquid nitrogen.

Difficulties were encountered in resolving the Hugoniot elastic limit

for the shock loaded martensitic samples. Because grain size can influence

the relative distinctness of the HEL on the shock wave record, recrystalliza-

tion experiments were done in an effort to develop a smaller grain size.

Two sets of samples were reduced in thickness 28% and 40% by cold rolling

and then samples were annealed for 20 minutes at temperatures ranging from

5750C to 675 0C in 25C increments. The annealed grain structures consisted

of fairly equiaxed grains havinq a large variation in grain size and there

were numerous annealing twins. All the annealed samples given 28% cold

reduction had similar grin ,tructures with a grain size of approximately

7 grains/mm as measured by the linear intercept method. For the samples

given 40% cold reduction, the one annealed at 575 0C had a somewhat smaller

grain size of approximately 8 grains/mm than the other samples. None of the

cold worked and annealed sainples showed a significant reductiioi in grain

size.

The thermal kinetics of the reverse transformation from martensite to

austenite ( ' y) were studied because some of the target samples were

heated prior to shock loadinq up to 401"(C for times as long as 30 minutes.

A set of samples transformed to martensite in liquid nitrogen were given

isochronal aging treatments for 30 minutes at temperatures ranging from

200'C to 550"C in 50C increments. Ut to 350"C, there was no observable

200°
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change in the martensitic microstructure as determined by optical metallo-

graphy. The sample aged at 4000C showed partial transformation to austenite,

and at 450 0C the reverse transformation a' - y had almost proceeded to

completion.

II. Microstructural Analysis

2.1 Optical Metallography

The metallurgical structures of samples given various treatments were

examined using standard metallographic techniques. The samples were mounted

in a room temperature thermosetting plastic (Kold Mount), ground to a flat

surface, and then hand ground on wet silicon carbide abrasive paper to 600

grit. Polishing was done on a 6 pm diamond abrasive wheel followed by a

final polish using a 0.05 pm gamma alumina wheel. The polished samples were

etched by swabbing with 3% Nital (3% nitric acid in ethanol) and then examined

with a metallurgical microscope at magnifications up to 500X.

Typical micrographs of the Fe-30%Ni samples prepared from the second

ingot are shown in Plate I. The characteristic platelet martensite structure

of a sample austenitized at 650 0C and quenched in liquid nitrogen is shown

in Plate I, top left. An example of a sample shock loaded to 90 kbars at

room temperature (shot no. 79-039) is shown in Plate I, top right, for com-

parison. The appearance of both microstructures is very similar. One differ-

ence in the shock loaded sample is the occurrence of thin deformation twins

in an austenite grain shown more clearly in Plate I, bottom left. These

microstructures are similar to earlier results reported by Leslie et al. (1964)

for an Fe-32%Ni alloy.

The samples shock loaded at elevated temperatures had similar micro-

structures, although there appeared to be a greater amount of austenite

present as indicated by the light, featureless areas shown in Plate I, bottom
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PLATE I

Optical micrographs of polished samples that were etched with 3% Nital.

top left: Fe-29.85%Ni alloy transformed to martensite by quenching

to -196°C. Magn. 125X.

top right: Sample 79-039 after shock loading to 90 kbars at ambient

temperature. Magn. 250X.

bottom left: Same sample as in top right. Magn. 250X.

bottom right: Sample 79-044 after shock loading to 65 kbars at 2000C.

Magn. 125X.

.

1'

I,
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right, of shot no. 79-044 shocked to 65 kbars at 2000C. The samples

loaded to higher shock pressures showed evidence of grain boundary cracking,

and one sample loaded to 140 kbars (no. 79-046) broke into several pieces.

2.2 Retained Austenite Measurements

Quantitative determination of the amount of retained austenite in liquid

nitrogen quenched samples was done using the x-ray diffraction method des-

cribed by Miller (1964). This technique is based on an empirical relation-

ship between the integrated intensities of low order x-ray reflections

from the face-centered cubic y-phase and the body-centered a'-phase. The

amount of austenite in some of the shock loaded samples was also measured.

As reported earlier by Rohde et al. (1968) for the shock wave induced reverse

martensitic transformation in an Fe-30%Ni alloy, the amount of reversal to

the austenitic phase increases with increasing shock stress.

2.3 Transmission Electron Microscopy

To do more detailed microstructural analyses, thin foil samples for trans-

mission electron microscopy (TEM) were prepared by electrochemical polishing.

Thin slices approximately 400 pm thick were cut from the shock loaded samples

using a low speed diamond cut-off wheel. These slices were hand ground to

200 pm thickness using wet silicon carbide abrasive paper and then chemically

polished to 100 pm thickness in a hot mixed acid solution containing two parts

acid (IOHCI:2HNO 3:IH 3PO 4 ) to one part water. Small discs, 3 mm in diameter,

were mechanically punched from the thinned slices for subsequent jet polishing.

Final electrochemical polishing was done in a double jet polishing apparatus

using a 5% perchloric acid/95% methanol electrolyte cooled to -35 to -400C

in a dry ice/isopropyl alcohol bath. A voltage of 80 V was used for polishing,

and an optical sensing mechanism automatically turned off the current when

perforation of the foil occurred.

I,
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The thin foils were examined in a JEM-200A electron microscope operated

at an acceleratina voltage of 200 kV to give maximum penetration of the foils.

This instrument is located at the Hanford Engineering Development Laboratory

(HEDL) in Richland, Washington, which is operated by Westinghouse under

contract for the U.S. Department of Energy. Access to this instrument for

this study was made possible by the kind cooperation of the personnel in the

electron microscopy group at HEDL under the direction of J. Straalsund and

T. Bierlein.

The TEM analysis involved the examination of bright-field and dark-field

images of the microstructures in conjunction with selected-area electron

diffraction patterns. In addition to dense dislocation tangles in the shock

loaded samples, a prominent feature was the occurrence of microtwinning within

the martensite platelets as shown in Plate II. Mechanical twinning in

body-centered cubic metals becomes a preferred mode of deformation at high

strain rates. Note in Plate II, bottom, that microtwinning did not occur in the

adjoining martensite platelet. As shown in PlateIIImicrotwinning also

occurred in a sample that had been transformed to martensite in liquid nitro-

gen but not shock loaded. There are a few twins visible in this micrograph

that formed on a secondary twinning system at right angles to the primary

twins. Dark-field imaqing of the area in Plate III using a (002) (X' reflection

confirmed that these microtwins had formed in the martensite phase.

Most of the areas observed in the TEM thin foils were the body-centered

cubic phase as determined by electron diffraction analysis. A few localized

areas of the face-centered cubic austenite phase were observed. The heavily

dislocated substructure gave poor image contrast and made analysis more

difficult. The thin foil samples were ferromagnetic which caused deflection

of the electron beam and gave some problems in orienting the foils for optimal

'I.
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PLATE II

Transmission electron micrographs of thin foils prepared from shock loaded

samples showing microtwinning.

top: Sample 79-039 shock loaded to 90 kbars at ambient temperature.

Magn. 84,OOOX.

bottom: Sample 79-044 shock loaded to 65 kbars at 2000C. Magn. 135,000X.

PLATE III

Transmission electron micrograph of sample transformed to martensite by

quenching to -1960 C. Note small amount of microtwinning on secondary

twinning system. Magn. 102,OOOX.

I.
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image contrast. Because the amount of austenite observed after shock loading

depends upon the driving pressure (Rohde et al., 1968), these TEM observations

indicate that relatively small volume fractions of austenite were produced

by the pressure-temperature conditions used for these shock experiments. One

of the thin foils after electropolishing was observed to have surface relief

or rumpling around the hole indicating that thinning of the sample had resulted

in the occurrence of the martenistic shear transformation.

1

I.-
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Appendix to Part A

SOME NOTES ON PLASTICITY THEORY

The two principal postulates of conventional, time independent, isotropic

plasticity theory are:

a) There exists a scalar yield function, f(a), such that

f(g) < 0 when behavior is elastic

f(a) = 0 when behavior is plastic

The equality defines the yield surface.

b) Increments in the various components of plastic strain make a constant

ratio with corresponding derivatives of f:

d c l _ d e l _ d F l _ d c _ d c 3 _ d F 3

11/l f/12 _f/13 - /22 f/23 33

This is more commonly written

r .. = dA 9f (2)ij o ij

where X is a "progress parameter" for the loading process. It may vary

as loading progresses.

Equation (2) is known as an "Associated Flow Rule," or sometimes "The Normality

Condition." The latter name cores from the following relation:

d f _ f d o

a. dt -9a i dt

In a space cy of nine dimensions, f = const. describes an 8 dimensional surface

gradient, Vf = (9f/3a ii " ij) is a vector normal to that surface. If the st''-
i1

I * II iIIli iII l _ ,ii
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is constrained to lie on the yield surface, f = const., then df/dt s 0 and the dis-

placement of the nine-component stress vector must lie on the yield surface.

The yield surface, f, must be invariant under orthogonal transformation of

coordinates, so it can be written as a function of the three invariants of the stress

tensor, J1, J2 1 J3' There are some variations among definitions of Jl, J2 J3 but

the definitions given by Malvern (1969) are common:

J = ll + 022 +033 "kk = Trq = -3p (3)

where p is mean pressure.

++2 2 + 2 (4)
2= ( I I 22 22033 + 033011) + a23 + a3, 12

_ 1( 1 (4b)
2 ijaij -oiiojj i -i 21

3 = deta

011 012 "13
1

"'21 022 023 = e 0qripjqkr (5)

0 31 032 033

It is almost universally believed that f is independent of J3' This probably

means that measurements are not yet sufficiently refined to detect its influence

(Gupta, 1977).

In general, af @f J + f J2 + f (J3
ao ij -l 'aj U2 3ij aJ3 aa j

From Eq. (3) (J 1/aoia) = 1 if i = J;= 0 if i 0 j, i.e.,
!U

(7)

aoij ij

IN.
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From Eq. (4b):

!J cy -j 1i (8)

From Eq. (5):

aom 6(emiknqrcajqagkr + imkepnraiIOkr

eijmepqnoip'jq)

+ik e +e e 
6 kr k (e nqr eiJmk qnr +ekjm erqn

I 1 e eqn (9)
2jkmn qrjq'gkr

Substitution of Eqs. (7), (8), and (9) into (6) gives

af -'L .. _ o+Lf -I e 00 (10
a___ a_ 1 +j ai 2 j Ii i31pi j pk qm

From Eq. (10) we can derive the following special cases.

__ z f +Af 1 e fL

ac011 3111 2 2 pql ek(,llapkq 3

The last term on the right hand side is

af)

2 31

____ af f3
3011+ (f1- _

1 2 3
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similar expressions exist for af/3a22, and af/aci33, so

ac1 a1  af 22  f a33
af = 3 i f  = -3 (l- -l 1 + + - -

af + af + f

3aI aa22  33

or

af _ 3  af (10.2)
T. 3 " ij,

As an alternative, f can be made a function of J1, J2". J3, where J2 is the

second invariant of the stress deviator tensor S.

i -- (11)

The trace of Stj is identically zero, 01 0. Therefore

111- J*) *2 S S (12)
2* 2 sijsij  I l,).Isijsij (2

There is a simple relation between J2" and J

,12 " S~ 12(l 61 ) a l

2 ij.ij ii i)(aj - - ij)

= 1aijaij 2 1 12 2 6i4'f " I" I 6tjatj + F- "IJ"IJ

61jlj = al ii Ii

6ij6ij - 3

I.
Therefore

1  
2 2 )

2. (1



76

1 - 12  + 2)

1 3

= + j (13)

It's now evident that we can, without losing generality, write f as a function of

(il' 12* 33) since 12* is a function of Jl and J2. In the special case where f

depends on a2* alone, we have

,f 3 f J2* = af (14)

Probably the most commonly used yield criterion in analytical work is the von

Mises criterion

f = * (15)
2 3

where Y is yield strength measured for a thin bar. Then

af 1 3S2* =S= I, aij= i

so

a__f (16)3stj " Sj

Then the associated flow rule, Eq. (2), reduces to an analogue of Newton's Law for

viscous flow:

dci - S1jdX (17)

tI This same result can be obtained directly from Eq. (2), using Eqs. (7), (8), (13)

and (15):
3f(32*) _f aa2

ii -

FIN i

L . e .
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_ =___ 2Jl 3

2J1I
(ai J-'jlij) + --3- 6i

= ij + P6ij = Sij

Thus

di = S. dX
13 1j

as before.

A misleading analogy is sometimes drawn between plastic flow and Newtonian

flow for a viscous fluid. Divide Eq. (17) by the time increment dt and define

K = dt/dX. The result is
, ij= i p (18)

If K< is defined as

K =k

VF' ji jp / 2

Eq. (19) is consistent with Eq. (15):

S S 2J*==ii
li = 2J 2 " = £ij i

which satisfies the conditions that J2* = k2 at yield, with k2 = y2/3. The analogy

between Eq. (18) and Newtonian flow is misleading because dx is a progress parameter

which has no relation to time. The basic assumption in this theory is that yield

and flow are independent of time; time enters only as a progress variable.

Effect of J -Dependence.

If the associated flow rule applies (Eq. (2)), then any dependence of f on

l~ - -III, , . . . . . .. .. . . .... .. -... .. . . . . ... .... .
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a is reflected by plastic dilatation, i.e.,

deP dA( f + f + 'f 3dXf

ija 11  'c22  33

and the ratio of this increment to other plastic strain increments is, e.g.,

dc ip  3af/aJ1  (20)

di P fllj

Gupta (1977), in analyzing biaxial experiments, has found a volume chanqe much greater than

that given by Eq. (20). He concludes that from such experiments one cannot tell

the difference between strain-hardening and JI dependence. He also points out that

in minerals and rocks the flow rule, Eq. (2), is commonly violated, and he concludes

that independent physical evidence is required in order to formulate flow relations

for equilibrium plasticity. There is, furthermore, no violation of fundamental

physical theories in assuming that delP = 0 when yield strength depends on pressure.

The difficulty of resolving such questions is indicated by the following example for

uniaxial strain. In that case

Sx Sll = -2Sy; S =

Where Sy =S22 = 339
2 1

= 3Sx /4

If yield stress is a function of pressure, p -J1/3, Eq. (15) becomes

3S 2f(2 2 1 = 4 3Y(J ) (21)

With Eq. (21) and i * . - 1, Eq. (20) becomes

de P - dep  - 2YdY/dJ 1  (22)

c P x x
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To calculate flaox , note that Sx * 2(ax - ay)/3, so that

f - (* x - ry)2 -Y2]/3

Then

Df/a x = 2 (ax - oy - YdY/dJ,)/3

In uniaxial compression, ox - ay = -Y after yield has occurred. Also pressure,

p = -J1/3, is a parameter more commonly used in experiments than Jl" With these

substitutions

f 2Y 1 dY(23)-aox  T- (1- ) (3

Substitution of Eq. (23) into (22) yields

dOp =e -dY/dp

1 - (1/3)dY/dp

Numerical calculations associated with shock propagation experiments often indicate

a dependence of Y on p. A representative number for dY/dp is about 0.03kb/kb.

Substitution of this into Eq. (24) yields

deP/dcP - -0.03 (25)

The principal experimental effect of plastic dilatation is to modify the relations

among stress and observable strains. Incremental stresses in uniaxial strain are

written as

dox  - Xdee + 2udexe

day= Xdee + 2dcyedo y

.
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These can be transformed to the forms

dax  = (X + 20)de x - 2jdc P(l +v deP (26)p1-2v dxP

1 deP (27)day - x'dE:x + UdexPol (27)d:x

x

If dY/dp > 0, its effect on Ox is to diminish the difference between elastic
~and plastic curves. Its effect on ay is to increase the difference, with the

result that resolved shear stress is less than would be calculated for no plastic

dilatation:

d(a a) id 3pdxP( 1 dOp  (28);',id ox - Xy 2p x"3dx

The net effect is small, so that even if the assumptions of vanishing plastic

dilatation and pressure-dependent yield were incompatible, errors would be very

small. Both of these conditions have been assumed in the numerical program

developed for this problem.

I

I

L

I-



81

REFERENCES

Averbach et al., Trans. ASM 42, 112 (1950).

Bertholf, L. D. et al., J. Appl. Phys. 46, 3776 (1975).

Blackburn, L. D., L. Kaufman and M. Cohen, Acta Met. 13, 533 (1965).

Bowden, H. G. and P. M. Kelly, Acta Met. 15, 1489 (1967).

Bowles, J. S., Acta Crystallography, 162-171 (March 1951).

Breedis, J. F., Trans. Met. Soc. AIME 230, 1583 (1964).

Coe, R. S., Contrib. Mineral. Petrol. 26, 247 (1970).

Dandekar, D. P. and G. E. Duvall, in Metallurgical Effects at High Strain
Rates, Plenum Press, 1973. R. W. Rohde, B. M. Butcher, J. R. Holland
an-d C. H Karnes, Eds.

Decker, R. F., "Transformations in 25% Ni Steels." Paper No. 12 in Research
Seminar on High-Nickel Alloys for High Temperatures: Iron-Nickel Alloys;
Stainless Steels. March 20, 1960, The Duquesne Club, Pittsburgh, Pa.
Sponsored and printed by the International Nickel Co., Development and
Research Division.

Forbes, J. W., Ph.D. Thesis, Washington State University (1976).

Fowler, C. M., F. S. Minshall, and E. G. Zukas, in Response of Metals to
High Velocity Deformation, P. G. Sherman and V. F. Zackay, Eds. Inter-
science, 1961.

Fowles, G. R., G. E. Duvall, J. Asay, P. Bellamy, F. Feistmann, D. Grady,
T. Michaels, and R. Mitchell, Rev. Sci. Instr. 41, 984 (1970).

Gibbs, J. W., "On the Equilibrium of Heterogeneous Substances," Scientific

Papers, Dover, 194 (1971).

Graham, R. A., D. H. Anderson, and J. R. Holland, J. Appl. Phys. 38, 223 (1967).

Gupta, Y. M., Acta Met. 25, 1509 (1977).

Gust, W. H. and E. B. Royce, J. Appl. Phys. 41, 2443 (1970).

Hilliard, J. E. and J. W. Cahn, Trans. AIME 221, 344 (1961).

Johnson, J. N. and W. Band, J. Appl. Phys. 38, 1578 (1967).

Johnson, J. N., 0. E. Jones, and T. E. Michaels, J. Appl. Phys, 41, 2330 (1970).

Kamb, W. B., J. Geophys. R. 66, 259 (1961).

Kennedy, J. D. and W. B. Benedick, Bull. Am. Phys. Soc. II, 10, 1112 (1965).

Kennedy, J. D. and W. B. Benedick, J. Phys. Chem. Solids 27, 125 (1966).

-- - -- -



82

Lawrence, R. J., Report No. SLA-73-0635, Sandia Laboratories, Albuquerque,
N.M. (1973).

Leslie, W. C., D. W. Stevens, and M. Cohen, in High-Strength Materials,

V. F. Zackay, ed., pp. 382-435, John Wiley and Sons, New York, 1964.

Lindgren, R., Metal Progress 57, 102 (1965).

Loree, T. R., R. H. Warnes, E. G. Zukas, and C. M. Fowler, Science 153,
1277 (1966).

Machlin, E. S. and M. Cohen, Trans. AIME - J. Metals, 1019 (Nov. 1951).

Malvern, L. E., Introduction to the Mechanics of a Continuous Medium, Prentice-
Hall (1969), pp. 89-94.

Miller, R. L., Trans. A.S.M. 57, 892 (1964).

Otte, H. M., Acta Met. 5, 614 (1957).

Papadakis, E. P. and E. L. Reed, J. Appl. Phys. 32, 682 (1961).

Patel, J. R. and M. Cohen, Acta Met. 1, 531 (1953).

Paterson, M. S., Rev. Geophys. and Sp. Physics II, No. 2, 355 (1973).

Pope, L. E. and L. R. Edwards, Acta Met. 21, 281 (1973).

Reed, R. P. and J. F. Breedis, in Behavior of Materials at Cryogenic Temperatures,
a symposium held at the 68th Annual Meeting of the ASTM, Lafayette, Ind.,
June 13-18, 1965. ASTM Special Technical Publication No. 387, pp. 60-132.
LC No. Sci-TA-460-S9395.

Robin, P. Y. F., Am. Mineralogist 59, 1286 (1974).

Rohde, R. W., J. R. Holland, and R. A. Graham, Trans. Met. Soc. AIME 242,
2017 (1968).

Rohde, R. W. and R. ,, Graham, Trans. Met. Soc. AIME 245, 2441 (1969).

Rohde, R. W., Acta Met. 18, 903 (1970).

Stepakoff, G. L. and L. Kaufman, Acta Met. 16, 13 (1968).

Van Thiel, M., Compendium of Shock Wave Data, UCLR-50108, Vol. 3, p. 662 (1977).

Wilkins, M. L., in Methods of Computational Physics, B. Alder, S. Fernbach
and M. Rotenberg, eds., Vol. III, Acad. Press, New York (1964).

Zukas, E. G. and L. S. Levinson, private communication (1976).

11

!I


